Huether & McCance (2017) define dyslipidemia as an abnormal concentration of serum lipoproteins, the result of genetic and dietary factors. The hardening aspect of this disease is the result of cholesterol deposits in the vessel, which decrease elasticity and make the vessel wall stiff  (Marsh & Rizzo, 2019).

Dyslipidemia’s Role in Coronary Artery Disease

Huether & McCance (2017) define dyslipidemia as an abnormal concentration of serum lipoproteins, the result of genetic and dietary factors. The hardening aspect of this disease is the result of cholesterol deposits in the vessel, which decrease elasticity and make the vessel wall stiff  (Marsh & Rizzo, 2019). The elevation of lipoproteins creates a narrowing of the vessel diameter, which in turn decreases blood flow to arteries. When dyslipidemia occurs in the coronary arteries, the decreased blood flow can lead to ischemia or infarct, depending on the size of the blockage. Controlling the progression of the disease is important, modifying lifestyle habits; diet and physical activity can help to prevent further complications. Medications are also available to keep lipid levels balanced.

Genetics Affects of Risk Factors in Coronary Artery Disease

Dyslipidemia is known as a heritable risk factor for CAD; patients with a family history should inform their practitioner to manage the disease process in the early state. Plasma lipids and lipoproteins are heritable risk factors for CAD, with heritability estimates ranging from 40% to 60% (Tada, Kawashiri, & Yamagishi, 2017). The best treatment is prevention, knowing a patient’s family history is paramount in controlling the lipid levels and keeping them at rates that will prevent CAD. Monitoring labs and dietary modifications assist those with family history and can avoid the progression of CAD.

Conclusion

Cardiovascular disease is still the leading cause of premature death world-wide with factors like abdominal obesity, hypertension and dyslipidemia being central risk factors in the etiology (Lidin, Hellénius, Rydell-Karlsson, & Ekblom-Bak, 2018). Hypertension and dyslipidemia both can accelerate the development of CAD. Fortunately, both factors are modifiable and are manageable by lifestyle modifications. Genetics plays a role in both hypertension and dyslipidemia; obtaining an accurate family history allows for early monitoring and controlling the modifiable factors, diet, and physical activity can keep both hypertension and dyslipidemia well controlled.

 

References

Huether, S. E., & McCance, K. L. (2017). Understanding pathophysiology (6th ed.). St. Louis, MO: Mosby.

Lidin, M., Hellénius, M.-L., Rydell-Karlsson, M., & Ekblom-Bak, E. (2018). Long-term effects on cardiovascular risk of a structured multidisciplinary lifestyle program in clinical practice. BMC Cardiovascular Disorders, 18(1), 59. https://doi-org.ezp.waldenulibrary.org/10.1186/s12872-018-0792-6

Marsh, C. C. . P. D., & Rizzo, C., MD. (2019). Hypertension. Magill’s Medical Guide (Online Edition). Retrieved from https://search-ebscohost-com.ezp.waldenulibrary.org/login.aspx?direct=true&db=ers&AN=89093446&site=eds-live&scope=site